DESCARTES: ARITHMETIQUE ET GEOMETRIE
Extrait du document
- Un fait: les mathématiques constituent la plus certaine des sciences. - Raisons de ce fait: les objets des mathématiques sont «purs » et « simples », car ils ne dépendent en rien de l'expérience, toujours incertaine, complexe, confuse. les mathématiques sont un système logico-déductif rigoureux: «elles consistent tout entières en une suite de conséquences déduites par raisonnement ». Une observation: l'erreur en mathématiques, en raison même de leur clarté et rigueur, ne peut provenir que d'une cause psychologique, «l'inattention» de l'esprit. Une question: si les mathématiques sont si faciles et si claires, pourquoi tant d'hommes lui préfèrent-ils l'étude de « sciences » bien moins sûres, telle que la philosophie ? Réponse: c'est parce qu'elles sont trop contraignantes : elles n'autorisent pas en effet à «affirmer des choses par divination», par intuition, ou à avancer des conjectures. Remarque finale : Constater la certitude supérieure des mathématiques ne signifie pas qu'il faille se consacrer uniquement à elles, mais qu'elles doivent servir de modèle aux autres sciences - notamment à la philosophie.
«
Par là on voit clairement pourquoi l'arithmétique et la géométrie sont beaucoup
plus certaines que les autres sciences: c'est que seules elles traitent d'un objet
assez pur et simple pour n'admettre absolument rien que l'expérience ait rendu
incertain, et qu'elles consistent tout entières en une suite de conséquences
déduites par raisonnement.
Elles sont donc les plus faciles et les plus claires de
toutes, et leur objet est tel que nous le désirons, puisque, sauf par inattention, il
semble impossible à l'homme d'y commettre des erreurs.
Et cependant il ne faut
pas s'étonner si spontanément beaucoup d'esprits s'appliquent plutôt à d'autres
études ou à la philosophie : cela vient, en effet, de ce que chacun se donne plus
hardiment la liberté d'affirmer des choses par divination dans une question
obscure que dans une question évidente, et qu'il est bien plus facile de faire des
conjectures sur une question quelconque que de parvenir à la vérité même sur
une question, si facile qu'elle soit.
De tout cela on doit conclure, non pas, en vérité, qu'il ne faut apprendre que
l'arithmétique et la géométrie, mais seulement que ceux qui cherchent le droit
chemin de la vérité ne doivent s'occuper d'aucun objet, dont ils ne puissent avoir
une certitude égale à celle des démonstrations de l'arithmétique et de la géométrie.
VOCABULAIRE:
DÉMONSTRATION : C'est un raisonnement conduisant à une conclusion certaine car nécessaire (aucune autre
n'étant possible).
La démonstration est une preuve ne reposant que sur la raison.
Le sceptique demande
généralement alors ce qui prouve la raison…
CONJECTURE: Toute proposition que l'on considère comme vraie, sans toutefois pouvoir en apporter la preuve
dans l'état actuel de la connaissance.
Une conjecture prouvée devient un théorème.
ANALYSE FORMELLE DU TEXTE
« On voit clairement pourquoi l'arithmétique et la géométrie sont beaucoup plus certaines que les autres sciences :
c'est que seules elles...
et qu'elles consistent toutes entières en...
Elles sont donc...
et leur objet est tel que...
puisque...
Et cependant il ne faut pas s'étonner si...
: cela vient en effet de ce que chacun...
et qu'il est bien
plus facile de...
que de...
même sur une question, si facile qu 'elle soit.
»
QUESTIONNEMENT INDICATIF
•
Pourquoi « l'arithmétique et la géométrie » sont-elles
« beaucoup plus certaines que les autres sciences »?
•
Pourquoi, selon Descartes, sont-elles « les plus faciles »?
•
Qu'est-ce qu'il est « bien plus facile de faire »? — Est-ce que cela est contradictoire avec l'affirmation que
l'arithmétique et la géométrie » sont « les plus faciles » (des sciences) ?
•
Qu'est-ce qu'une « conjecture » ?
•
Qu'est-ce qu'une « question évidente »?
Ordre des idées:
- Un fait: les mathématiques constituent la plus certaine des sciences.
- Raisons de ce fait:
les objets des mathématiques sont «purs » et « simples », car ils ne dépendent en rien de l'expérience, toujours
incertaine, complexe, confuse.
les mathématiques sont un système logico-déductif rigoureux: «elles consistent tout entières en une suite de
conséquences déduites par raisonnement ».
Une observation: l'erreur en mathématiques, en raison même de leur clarté et rigueur, ne peut provenir que d'une
cause psychologique, «l'inattention» de l'esprit.
Une question: si les mathématiques sont si faciles et si claires, pourquoi tant d'hommes lui préfèrent-ils l'étude de
« sciences » bien moins sûres, telle que la philosophie ?
Réponse: c'est parce qu'elles sont trop contraignantes : elles n'autorisent pas en effet à «affirmer des choses par
divination», par intuition, ou à avancer des conjectures.
Remarque finale : Constater la certitude supérieure des mathématiques ne signifie pas qu'il faille se consacrer
uniquement à elles, mais qu'elles doivent servir de modèle aux autres sciences - notamment à la philosophie.
Les mathématiques ont souvent été au centre des préoccupations philosophiques.
Les antiques tels Platon avait
une fascination pour les mathématiques et certains en faisait une discipline essentielle pour l'apprentissage de la
philosophie.
La tradition affirme ainsi que la phrase « que nul n'entre ici s'il n'est géomètre » ait été gravée à l'entrée.
»
↓↓↓ APERÇU DU DOCUMENT ↓↓↓
Liens utiles
- explication methode descartes
- Fiche Descartes Discours de la méthode
- Descartes: une « chose pensante »
- Descartes: erreur et enfance
- Le langage est le propre de l'homme - DESCARTES